약 1년 6개월 동안의 주간 태양광 발전량 데이터를 분석하여 계절적 패턴, 최대/최소 발전량, 연도별 변화를 분석했습니다. 이 분석은 태양광 발전 시스템의 성능을 이해하고 효율성을 평가하는 데 유용한 정보를 제공합니다.
주요 발전량 통계
전체 발전량 통계
최대 발전량: 129.10 kWh (2024년 5월 3주차)
최소 발전량: 28.45 kWh (2023년 12월 마지막주)
전체 평균 발전량: 74 kWh/주
계절별 평균 발전량
계절
평균 발전량 (kWh)
봄 (3-5월)
99
여름 (6-8월)
91
가을 (9-11월)
62
겨울 (12-2월)
57
월별 평균 발전량
연도
1월
2월
3월
4월
5월
6월
7월
8월
9월
10월
11월
12월
2023
–
–
–
–
–
–
–
–
–
58
58
38
2024
57
59
88
99
114
107
71
96
74
66
53
56
2025
54
77
94
102
–
–
–
–
–
–
–
–
연도별 발전량 비교 (2023-2024년 vs 2024-2025년)
월
2023-2024 (kWh)
2024-2025 (kWh)
증감 (kWh)
증감률 (%)
10월
58
66
+8
+13.8%
11월
58
53
-5
-8.6%
12월
38
56
+18
+47.4%
1월
57
54
-3
-5.3%
2월
59
77
+18
+30.5%
3월
88
94
+6
+6.8%
4월
99
102
+3
+3.0%
분석 결과 요약
계절별 패턴
봄철(3-5월): 가장 높은 발전량을 보이며, 5월에 최대 발전량 기록
여름철(6-8월): 두 번째로 높은 발전량을 보이지만, 7월은 장마 등의 영향으로 다소 감소하는 경향
가을철(9-11월): 중간 수준의 발전량을 보이며, 10월부터 점차 감소
겨울철(12-2월): 가장 낮은 발전량을 보이지만, 두 번째 해에는 개선됨
연도별 발전량 변화
겨울철 성능 개선: 12월 발전량이 47.4% 증가하고, 2월도 30.5% 증가하는 등 겨울철 발전 효율이 크게 향상됨
안정적인 봄철 성능: 3월과 4월은 두 번째 해에도 안정적으로 높은 성능 유지
상반된 가을철 추세: 10월은 증가한 반면, 11월은 감소하는 상반된 추세
주목할 만한 발견
봄철과 여름철의 발전량이 가을과 겨울에 비해 약 1.6배 높게 나타나며, 이는 일조량과 일조 시간의 영향으로 분석됨
최대 발전량(129.10 kWh)과 최소 발전량(28.45 kWh) 사이에는 4.5배 이상 차이가 있어 계절에 따른 발전량 변동이 매우 큼
두 번째 해에는 대체로 발전량이 개선되었으며, 특히 겨울철 발전량이 크게 향상됨
5월은 두 해 모두 가장 높은 발전량을 기록하여 태양광 발전에 가장 적합한 시기로 확인됨
활용 방안
에너지 계획 수립
계절별 발전량 예측을 통해 에너지 수급 계획 수립
최소 발전량 시기(12월)에 대비한 에너지 저장 또는 대체 에너지 계획 마련
시스템 성능 평가
연도별 발전량 비교를 통해 시스템 성능 개선 여부 평가
특정 계절/월의 발전량 추세 분석을 통한 시스템 이상 감지
경제성 분석
계절별 발전량 데이터를 활용한 태양광 설비 투자 회수 기간 예측에 참고
(실제 태양광 설치 후 전기요금 최대 발생이 약 4~5천원 수준으로 2회 밖에 없었음. 그 외 모두 0원)
실제 발전량을 기반으로 한 정확한 경제성 분석 가능
결론
1년 6개월 간의 데이터 분석 결과, 태양광 발전량은 계절과 월별로 큰 차이를 보이며, 연도별로 발전 효율이 개선되는 추세를 확인했습니다. 특히 봄철(3-5월)이 가장 높은 발전량을 보이고, 겨울철(12-2월)이 가장 낮은 발전량을 보이지만, 두 번째 해에는 겨울철 발전량도 상당히 개선되었습니다.
이러한 분석 결과는 태양광 발전 시스템의 효율적인 운영과 에너지 계획 수립에 유용한 기초자료로 활용될 수 있을 것입니다.
내용을 모두 지우고, 아래와 같이 1순위: Techlabs, 2순위: KRFOSS 순서로 작성합니다:
# ✅ 1순위: Techlabs 미러
deb https://mirror.techlabs.co.kr/ubuntu jammy main restricted universe multiverse
deb https://mirror.techlabs.co.kr/ubuntu jammy-updates main restricted universe multiverse
deb https://mirror.techlabs.co.kr/ubuntu jammy-backports main restricted universe multiverse
deb https://mirror.techlabs.co.kr/ubuntu jammy-security main restricted universe multiverse
# ✅ 2순위: KRFOSS 미러 (Fallback)
deb https://ftp.krfoss.org/ubuntu jammy main restricted universe multiverse
deb https://ftp.krfoss.org/ubuntu jammy-updates main restricted universe multiverse
deb https://ftp.krfoss.org/ubuntu jammy-backports main restricted universe multiverse
deb https://ftp.krfoss.org/ubuntu jammy-security main restricted universe multiverse
💡 Techlabs 미러가 일시적으로 느리거나 다운된 경우, apt는 자동으로 KRFOSS 미러로 전환됩니다. 이중 미러 구성은 안정성 확보에 효과적입니다.
3. 패키지 인덱스 업데이트
sudo apt update
이제부터 모든 패키지는 Techlabs 미러에서 빠르게 다운로드됩니다. apt 사용 체감 속도가 확연히 다르게 느껴질 거예요.
🔥 왜 Techlabs 미러를 써야 하나요?
✅ Canonical 공식 인증 미러입니다. → launchpad.net에서 공식 확인 가능
✅ HTTPS 지원으로 보안에 강력
✅ IPv6 지원, 클라우드 및 최신 네트워크 환경에 유리
✅ 서울 데이터센터 기반, 국내에서 최상의 속도 보장
✅ 서버 안정성과 동기화 상태 매우 우수 — 업데이트 누락 거의 없음
📌개발자, 서버 관리자, 기업 보안 환경에서는 Techlabs 미러가사실상 유일한 선택지입니다.
https://launchpad.net/ubuntu/+archivemirrors
<테크랩스가 가장 빠른 미러 서비스를 운영합니다>
✨ 마무리
우분투를 제대로 쓰고 싶다면, 미러 서버부터 바꾸는 것이 시작입니다. 특히 보안이 중요한 환경, 서버 운영, 클라우드 VM이라면 TLS 미러는 필수입니다.
👉 지금 바로 Techlabs + KRFOSS 이중 설정으로 빠르고 안전한 우분투 환경을 구성해보세요!
sudo mysql_secure_installation sudo mysql -e "CREATE DATABASE roundcube CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;" sudo mysql -e "CREATE USER 'roundcube'@'localhost' IDENTIFIED BY 'StrongPassword';" sudo mysql -e "GRANT ALL PRIVILEGES ON roundcube.* TO 'roundcube'@'localhost';" sudo mysql -e "FLUSH PRIVILEGES;"
7.3 Roundcube 다운로드 및 설치
bash
cd /tmp wget https://github.com/roundcube/roundcubemail/releases/download/1.6.0/roundcubemail-1.6.0-complete.tar.gz tar -xvzf roundcubemail-1.6.0-complete.tar.gz sudomv roundcubemail-1.6.0 /var/www/roundcube sudochown -R www-data:www-data /var/www/roundcube
7.4 Roundcube 설정
bash
cd /var/www/roundcube/config sudocp config.inc.php.sample config.inc.php
# Postfix 가상 메일박스 업데이트 echo"newuser@example.com example.com/newuser/"|sudotee -a /etc/postfix/vmailbox sudo postmap /etc/postfix/vmailbox
# Dovecot 사용자 추가 (비밀번호 해시는 doveadm pw 명령으로 생성) sudo doveadm pw -s SHA512-CRYPT # 출력된 해시를 사용하여 사용자 추가 echo"newuser@example.com:{SHA512-CRYPT}생성된_해시:5000:5000::/var/mail/vhosts/example.com/newuser::"|sudotee -a /etc/dovecot/private/passwd
사용자 삭제
bash
# Dovecot 사용자 삭제 sudosed -i '/newuser@example.com/d' /etc/dovecot/private/passwd
# 서비스 상태 점검 services=("postfix" "dovecot" "rspamd" "apache2" "mariadb" "redis-server") failed_services=()
for service in "${services[@]}"; do if ! systemctl is-active --quiet $service; then failed_services+=($service) echo "$(date): 서비스 $service 중지됨" >> $LOG_FILE fi done
# 디스크 사용량 점검 DISK_USAGE=$(df -h / | awk '\''NR==2 {print $5}'\'' | sed '\''s/%//'\') if[$DISK_USAGE -gt 90];then echo"$(date): 디스크 공간 부족 ($DISK_USAGE%)">>$LOG_FILE echo"디스크 공간 부족 ($DISK_USAGE%)"| mail -s "메일 서버 경고: 디스크 공간 부족"$ADMIN_EMAIL fi
# 메일 큐 점검 QUEUE_SIZE=$(mailq |grep -c "^[A-F0-9]") if[$QUEUE_SIZE -gt 100];then echo"$(date): 메일 큐 크기가 큼 ($QUEUE_SIZE)">>$LOG_FILE echo"메일 큐 크기: $QUEUE_SIZE"| mail -s "메일 서버 경고: 큰 메일 큐"$ADMIN_EMAIL fi
# 실패한 서비스가 있으면 알림 if[${#failed_services[@]} -gt 0];then echo"실패한 서비스: ${failed_services[*]}"| mail -s "메일 서버 경고: 서비스 중지됨"$ADMIN_EMAIL # 서비스 자동 재시작 시도 forservicein"${failed_services[@]}";do echo"$(date): $service 재시작 시도">>$LOG_FILE systemctl restart $service done fi
## 서버 정보 - 호스트명: mail.example.com - IP 주소: [서버 IP] - OS: Ubuntu 20.04/22.04 LTS
## 설치된 구성 요소 - Postfix (SMTP 서버) - Dovecot (IMAP 서버) - Rspamd (스팸 필터링) - Roundcube (웹메일) - MariaDB (데이터베이스) - Let\'s Encrypt SSL 인증서
## 중요 파일 위치 - Postfix 설정: /etc/postfix/ - Dovecot 설정: /etc/dovecot/ - Rspamd 설정: /etc/rspamd/ - 메일박스: /var/mail/vhosts/ - SSL 인증서: /etc/letsencrypt/live/mail.example.com/
## 일반 관리 작업 1. 사용자 추가: \`\`\`bash # 메일박스 생성 sudomkdir -p /var/mail/vhosts/example.com/newuser sudochown -R vmail:vmail /var/mail/vhosts/example.com/newuser
# 가상 메일박스 맵 업데이트 echo"newuser@example.com example.com/newuser/"|sudotee -a /etc/postfix/vmailbox sudo postmap /etc/postfix/vmailbox
# 비밀번호 해시 생성 sudo doveadm pw -s SHA512-CRYPT
# 사용자 추가 echo"newuser@example.com:{SHA512-CRYPT}생성된_해시:5000:5000::/var/mail/vhosts/example.com/newuser::"|sudotee -a /etc/dovecot/private/passwd \`\`\`
## 백업 및 복원 - 백업 스크립트: /usr/local/bin/mail-backup.sh - 백업 위치: /var/backups/mail/ - 백업 내용: 설정 파일, 메일박스, 데이터베이스 - 복원 예제: \`\`\`bash # 설정 파일 복원 sudotar -xzf /var/backups/mail/DATE/postfix_conf.tar.gz -C /
# 메일박스 복원 sudotar -xzf /var/backups/mail/DATE/mailboxes.tar.gz -C /
# 데이터베이스 복원 gunzip -c /var/backups/mail/DATE/roundcube_db.sql.gz |sudo mysql roundcube \`\`\` EOF'
20.2 최종 확인 체크리스트
bash
# 최종 확인 스크립트 sudobash -c 'cat > /root/final-check.sh << EOF #!/bin/bash echo "==== 메일 서버 설정 확인 ====" echo ""
echo "1. 서비스 상태 확인" systemctl status postfix dovecot rspamd apache2 mariadb redis-server | grep active
Web-Check는 웹사이트의 보안, 성능, 서버 정보, 도메인 구성 등을 분석할 수 있는 오픈소스 OSINT(오픈 소스 인텔리전스) 도구입니다. 웹사이트 운영자, 개발자, 보안 연구원 등이 웹사이트의 취약점을 빠르게 파악하고 최적화하는 데 유용하게 활용할 수 있습니다.
2. Web-Check의 주요 기능
Web-Check는 다음과 같은 다양한 기능을 제공합니다.
🔹 1) 서버 및 도메인 정보 조회
IP 주소 및 서버 위치 확인
Whois 조회를 통한 도메인 등록 정보 확인
DNS 레코드(A, MX, TXT 등) 분석
🔹 2) 보안 및 네트워크 점검
SSL/TLS 구성 확인 (HTTPS 보안 검사)
오픈 포트 스캔 (방화벽 및 보안 취약점 탐색)
HSTS 및 보안 헤더 분석
Traceroute 분석을 통한 네트워크 경로 추적
🔹 3) 웹사이트 성능 및 최적화 분석
페이지 로딩 속도 및 성능 측정
HTTP 헤더 최적화 상태 점검
쿠키 및 세션 관리 분석
🔹 4) 위협 감지 및 블랙리스트 검사
Google Safe Browsing, PhishTank 등의 보안 블랙리스트 점검
Web Application Firewall(WAF) 우회 테스트
3. Web-Check 설치 및 사용법
Web-Check는 온라인 도구로 사용할 수도 있고, 자체 서버에 설치해서 활용할 수도 있습니다.
(1) 온라인에서 Web-Check 사용하기
Web-Check 공식 사이트에서 URL을 입력하면 간편하게 웹사이트를 분석할 수 있습니다. 🔗 Web-Check 공식 사이트
(2) 로컬에서 Web-Check 설치하기
“`bash git clone https://github.com/your-repo/web-check.git cd web-check npm install npm start
browser-use의 Web UI는 자동화 및 원격 브라우저 제어를 위한 인터페이스입니다. 이는 다양한 환경에서 웹 스크래핑, UI 자동화, API 호출을 더 쉽게 수행할 수 있도록 돕는 도구입니다.
🔹 1. 주요 기능
✅ 웹 브라우저 원격 제어
browser-use는 Puppeteer 및 Playwright 같은 헤드리스 브라우저 엔진을 활용하여 UI 자동화 및 원격 브라우징을 지원합니다.
Web UI를 통해 브라우저 세션을 관리하고, 직접 조작하거나, 자동화 스크립트를 실행할 수 있습니다.
✅ 웹 자동화 및 데이터 스크래핑
특정 웹사이트에서 데이터를 자동으로 가져올 수 있도록 설정할 수 있습니다.
browser-use Web UI를 통해 XPath 및 CSS Selector를 사용하여 데이터를 추출할 수 있습니다.
✅ 멀티 인스턴스 지원
여러 개의 브라우저 세션을 실행할 수 있으며, 이를 Web UI에서 관리할 수 있습니다.
각 인스턴스는 독립적인 쿠키 및 세션을 가질 수 있어, 여러 계정 로그인 또는 멀티탭 작업이 가능합니다.
✅ 스크립트 실행 기능
JavaScript 또는 Python 스크립트를 Web UI에서 실행하여 자동화된 작업을 설정할 수 있습니다.
API 호출을 통해 브라우저 제어가 가능하므로, 외부에서 특정 액션을 트리거할 수 있습니다.
✅ 프록시 및 사용자 지정 헤더 지원
browser-use는 다양한 프록시 설정을 지원하여 IP 우회가 가능합니다.
Web UI에서 User-Agent, Referer, Headers 등을 커스텀 설정하여 크롤링 탐지를 회피할 수 있습니다.
즉, 이걸로 무엇을 할 수 있냐면, 쿠팡에 접속해서 브라운 9시리즈 면도기중에 로켓배송으로 가장 저렴한걸 장바구니에 담아서 결제해! 라는 명령을 내리면, 수행한다는 거죠. (물론 매번 모든걸 한번에 수행하진 못합니다, 이상한 에러가 날 수 있고, 로그인을 해줘야 할 수도 있고 해서, 조금의 코딩은 필요할 수 있습니다)
그리고 또 한가지, 딥 리서치를 시킬 수 있는 기능이 존재 합니다.
예를 들어 위와 같이 딥리서치를 해 보면
아래와 같은 로그를 볼 수 있습니다.
Extracted page content: Title: – YouTube URL Source: https://www.youtube.com/watch?v=mudcagzsb9A Markdown Content: – YouTube =============== Search Watch later Share Copy link Info Shopping Tap to unmute 2x If playback doesn’t begin shortly, try restarting your device. • Share Include playlist An error occurred while retrieving sharing information. Please try again later. 0:00 0:00 / 0:00•Live
• Scroll for details • NaN / NaN Back Search
INFO [src.agent.custom_agent] ✅ Task completed successfully INFO [src.agent.custom_agent] Created GIF at agent_history.gif INFO [controller] 🔗 Opened new tab with https://www.mdpi.com INFO [controller] 🔄 Switched to tab 0 INFO [src.utils.deep_research] Extracted page content: Title: https://www.google.com/search?q=LWIR%20vs%20ESWIR&udm=14 URL Source: https://www.google.com/search?q=LWIR%20vs%20ESWIR&udm=14 Markdown Content: https://www.google.com/search?q=LWIR%20vs%20ESWIR&udm=14 =============== * * *
* * About this page Our systems have detected unusual traffic from your computer network. This page checks to see if it’s really you sending the requests, and not a robot. Why did this happen? This page appears when Google automatically detects requests coming from your computer network which appear to be in violation of the Terms of Service. The block will expire shortly after those requests stop. In the meantime, solving the above CAPTCHA will let you continue to use our services. This traffic may have been sent by malicious software, a browser plug-in, or a script that sends automated requests. If you share your network connection, ask your administrator for help — a different computer using the same IP address may be responsible. Learn more Sometimes you may be asked to solve the CAPTCHA if you are using advanced terms that robots are known to use, or sending requests very quickly. IP address: 2600:1900:0:2d04::2100 Time: 2025-02-25T08:24:04Z URL: https://www.google.com/search?q=LWIR%20vs%20ESWIR&udm=14
INFO [src.agent.custom_agent] ❌ Failed to complete task in maximum steps INFO [src.agent.custom_agent] Created GIF at agent_history.gif INFO [src.utils.deep_research] save query: MWIR camera specifications and uses at ./tmp/deep_research/ad7a689d-1305-4b5a-93b1-7c6b0d4cbac9\query_results\1-1.md INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out how to process the user’s query about SWIR, MWIR, LWIR, and ESWIR cameras. The user wants a detailed comparison between these types of cameras. Let me start by understanding each acronym.
First, SWIR stands for Short-Wave Infrared. These cameras operate in the 0.9 to 1.7 micrometer range. They’re often used in applications where some NIR wavelengths are blocked, like in glass or certain materials. I remember reading that SWIR is good for things like thermal imaging and can sometimes see through fog.
Next up is MWIR, which stands for Mid-Wave Infrared. This operates from 1.7 to 5 micrometers. MWIR cameras are typically used in military and surveillance because they work well in both day and night conditions. They can detect a wide range of thermal emissions, making them versatile.
Then there’s LWIR, or Long-Wave Infrared, covering 5 to 8 micrometers. These are often used for high-temperature objects like industrial furnaces or metal processing. They have better resolution at longer distances but might not be as effective in detecting cooler objects.
ESWIR is Extended Short-Wave Infrared, operating from 0.9 to 1.7 micrometers, similar to SWIR but maybe optimized differently. I’m a bit fuzzy on the exact differences here; perhaps ESWIR offers better sensitivity or specific spectral bands?
Looking at the current search results provided, it’s mostly about the FLIR A6780 MWIR camera. The specs mention 1.0 to 5.0 micrometers, which fits the MWIR range. It uses InSb detectors and has features like motorized focus and Gigabit Ethernet connectivity. This suggests that MWIR cameras are designed for high thermal sensitivity and flexibility in various applications.
I should structure the response by defining each camera type, their spectral ranges, key features, typical use cases, advantages, and limitations. Including technical specs like detector types (like InSb for MWIR) adds depth. I also need to ensure that each section is concise but informative, avoiding redundancy since the user emphasized minimizing information loss.
I should make sure to highlight how each camera type differs in terms of resolution, temperature range, and application suitability. For example, SWIR might be better for certain industrial inspections where LWIR isn’t as effective due to shorter wavelengths capturing different thermal signatures.
Finally, I’ll organize all this into a JSON list with summaries and reasoning on how each piece fits into the overall report. This way, the user gets a clear comparison that can be easily referenced or used in further analysis.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information which includes details on each type except for MWIR, which they just searched about. Let me start by recalling what I know.
From the Previous Recorded Information, I remember that SWIR (Short-Wave Infrared) operates in 0.9 to 1.7 µm and is good for detecting thermal emissions through glass. It’s used in industrial inspections and surveillance. LWIR (Long-Wave Infrared) covers 5 to 8 µm, ideal for high-temperature applications like furnaces but struggles with cooler objects. ESWIR extends SWIR into NIR, making it better for advanced surveillance.
Now, the current search was about MWIR cameras. The previous info had a FLIR A6780 MWIR camera which operates from 1.0 to 5.0 µm. It uses a cooled InSb detector and has high frame rates. This suggests MWIR is used in industrial and military settings, good for detailed thermal analysis.
I need to structure the JSON output with each camera type as separate entries. Each should have their spectral range, key features, applications, advantages, and disadvantages. The thinking field should explain where this info fits in a report—like introduction or analysis sections.
Wait, I should make sure not to repeat information already present. For example, SWIR’s ability to penetrate glass was mentioned before, so I don’t need to include that again for MWIR unless it adds new context.
I also need to ensure each entry has the correct URL and title if available. Since the current search result didn’t yield useful info beyond the YouTube video (which seems unhelpful), most entries will have “unknown” as source.
MWIR: 1.0-5.0 µm, cooled detectors, high frame rates, industrial/military.
LWIR: 5-8 µm, high temp apps, poor for cool objects.
ESWIR: Extends SWIR to NIR, advanced surveillance.
Each should have a summary with key points and thinking on placement in the report.
I think I’ve covered all necessary details without redundancy. Now, structuring each as JSON entries with appropriate titles and URLs where possible.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] save query: LWIR camera technology and applications at ./tmp/deep_research/ad7a689d-1305-4b5a-93b1-7c6b0d4cbac9\query_results\1-2.md INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information and a new search result about LWIR cameras. Let me start by recalling what I know from the previous data.
From before, I remember that SWIR (Short-Wave Infrared) operates in 0.9 to 1.7 µm. They can detect thermal emissions through glass and are used in industrial inspections and surveillance. MWIR (Mid-Wave Infrared) is from 1.0 to 5.0 µm, uses cooled detectors like InSb, and is good for high frame rates. It’s used in military and manufacturing. LWIR (Long-Wave Infrared) covers 5 to 8 µm, ideal for high-temperature objects and longer distances but struggles with cooler ones. ESWIR extends SWIR into NIR, up to 2.6 µm, making them better for advanced surveillance.
Now, looking at the new search result about LWIR cameras from IDTechEx. It mentions that LWIR is used in automotive for ADAS and autonomous driving because they can detect pedestrians and objects in low-light conditions. They’re passive systems using microbolometers, which are reliable but expensive. The report also talks about their future growth due to regulations like NHTSA’s requirements.
I need to extract the key points from this new result without duplicating previous info. The summary should include spectral range, technology used (microbolometers), applications in automotive for safety, and market trends regarding cost and adoption.
Thinking about how this fits into a report: it would go under the analysis section, comparing LWIR with other types. It highlights their niche but growing role in ADAS and autonomous vehicles, which ties into real-world applications and technological advancements.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information and a new search result about LWIR cameras. Let me start by recalling what I know from the previous data.
From before, I remember that SWIR (Short-Wave Infrared) operates in 0.9 to 1.7 µm. They can detect thermal emissions through glass, which is useful for surveillance and industrial inspections. ESWIR extends this range into NIR, making them better for detecting a wider range of thermal emissions.
MWIR (Mid-Wave Infrared) covers 1.0 to 5.0 µm. The FLIR A6780 example had a cooled InSb detector and high frame rates, used in industrial and military settings. LWIR (Long-Wave Infrared) operates from 5 to 8 µm, ideal for high-temperature objects like furnaces. They have better resolution at longer distances but struggle with cooler objects.
Now, looking at the new search result about LWIR cameras: it’s part of a report by IDTechEx discussing their use in automotive applications. LWIR is used for detecting pedestrians and other road users in low-light conditions because they can pick up heat signatures effectively. The market is growing due to regulations like NHTSA’s mandates for advanced AEB systems.
I need to extract the key points from this new information without duplicating what’s already known. The previous data didn’t cover automotive applications, so that’s a new angle. Also, the report mentions how LWIR will be crucial for autonomous vehicles and robotaxis because of their reliability in low-visibility conditions.
So, I should summarize the new info about LWIR’s role in ADAS, autonomous driving, and regulatory compliance. This adds context to their application beyond industrial uses. It also touches on market growth projections, which is valuable for understanding their future significance.
I need to make sure the summary includes technical specs like spectral range, applications (especially automotive), and how they compare to other camera types in terms of use cases and effectiveness. The thinking part should link this info to sections like analysis or application-specific uses in a report.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information and a new search result about LWIR cameras. Let me start by recalling what I know from the previous data.
From before, I remember that SWIR (Short-Wave Infrared) operates in 0.9 to 1.7 µm. They can see through glass, which is useful for industrial inspections and surveillance. MWIR (Mid-Wave Infrared) covers 1.0 to 5.0 µm, used in military and manufacturing with cooled detectors. LWIR (Long-Wave Infrared) works from 5 to 8 µm, ideal for high-temperature objects and automotive applications like ADAS. ESWIR extends SWIR into NIR, up to 2.6 µm, for advanced surveillance.
Now, looking at the new search result about LWIR technology and applications. It’s a detailed report from IDTechEx. The content mentions that LWIR cameras operate in 5 to 8 µm, suitable for detecting high-temperature objects and performing well in low-light conditions. They’re increasingly used in automotive for ADAS and autonomous driving because they can detect pedestrians effectively.
The report also talks about market growth driven by regulations like NHTSA’s mandates for advanced AEB. It expects significant adoption in higher SAE level vehicles. Technologically, LWIR uses microbolometers and has potential for sensor fusion with other systems like LiDAR and radar. However, it’s currently limited to high-end vehicles but is expected to become more mainstream as costs come down.
So, how does this new info fit into what I already have? Previously, I noted that LWIR was used in industrial furnaces and had limitations with cooler objects. Now, the IDTechEx report adds automotive applications, regulatory influences, and technological advancements like sensor fusion. This provides a more comprehensive understanding of LWIR’s role beyond just industrial uses.
I should make sure not to repeat information already captured. The new data emphasizes automotive applications, which wasn’t as detailed before. It also introduces market forecasts and regulatory impacts, which are important for a thorough comparison.
In terms of structure, the summary should highlight the spectral range, key features (like microbolometers), applications (especially in ADAS and autonomous driving), and mention the influence of regulations. The thinking part should note that this info is crucial for understanding automotive uses and how LWIR compares to other camera types in safety technologies.
I need to ensure that the summary includes key data points like spectral range, detector type, frame rates if available, and applications. Also, since the source URL and title are provided, I’ll include those accurately.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information and current search results, so I should use those to create a JSON list with summaries and thinking.
First, looking at the Previous Recorded Information, there are entries about each camera type. For example, SWIR operates in 0.9-1.7 µm, good for detecting through glass. MWIR is from 1.0-5.0 µm, used in industrial and military settings with high frame rates. LWIR covers 5-8 µm, ideal for high-temperature objects and automotive uses like ADAS. ESWIR extends SWIR into NIR, useful for advanced surveillance.
The current search results focus on LWIR technology and applications. It mentions that LWIR cameras are used in automotive for AEB and autonomous driving because they can detect pedestrians well in low-light conditions. They’re passive systems relying on heat signatures, which makes them reliable but limited to higher-end vehicles currently due to cost.
I need to extract the key points from these sources without redundancy. Each entry should have a URL, title, summary, and thinking about where it fits in a report.
For LWIR cameras, the IDTechEx report provides detailed info on their use in ADAS, autonomous driving, and regulatory compliance. It also talks about cost reductions making them more accessible. This is important for understanding their role compared to other camera types.
I should structure each JSON entry with these details, ensuring that key data like spectral ranges and applications are included. The thinking part should explain how each piece can be used in the report—like introduction, background, analysis sections.
So, I’ll create entries for each camera type based on the provided info, making sure to include URLs where available and “unknown” where sources aren’t specified. Each summary will capture essential details without losing important figures.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] save query: Difference between SWIR and MWIR cameras at ./tmp/deep_research/ad7a689d-1305-4b5a-93b1-7c6b0d4cbac9\query_results\1-4.md INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information, but the current search results are just a Google error message about too many requests. Let me start by recalling what I know from the Previous Recorded Information.
From there, I remember that SWIR (Short-Wave Infrared) operates in 0.9 to 1.7 µm and is good for detecting thermal emissions through glass. It’s used in industrial inspections and surveillance. MWIR (Mid-Wave Infrared) covers 1.0 to 5.0 µm, uses cooled detectors like InSb, and is used in industrial, military, and R&D applications with high frame rates.
LWIR (Long-Wave Infrared) works from 5 to 8 µm, ideal for high-temperature objects and automotive ADAS. ESWIR extends SWIR into NIR up to 2.6 µm, enhancing detection capabilities for surveillance and research.
Since the current search didn’t yield new results due to the error, I can only rely on existing data. I should structure the JSON output with each camera type’s specs, applications, pros, cons, and where they fit in a report. Make sure not to repeat information already recorded and include key details like spectral ranges and detector types.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] save query: Comparison of LWIR vs ESWIR cameras at ./tmp/deep_research/ad7a689d-1305-4b5a-93b1-7c6b0d4cbac9\query_results\1-5.md INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided a detailed search result from Axiom Optics about these types of infrared cameras. Let me start by understanding each camera type based on the information given.
First, SWIR (Short-Wave Infrared) cameras operate in the range of 0.9 to 1.7 micrometers. They detect reflected light rather than emitted heat. This makes them useful for applications like detecting defects in fruits or electronics, counterfeit detection, and art restoration. The article mentions that Sony’s SenSWIR technology extends this range up to 2.2 micrometers, which is considered ESWIR (Extended SWIR). These cameras use materials like InGaAs, Ge, or InGaAsP for detection.
Next, MWIR (Middle-Wave Infrared) cameras work in the 3 to 5 micrometer range and detect emitted heat. They are effective in industrial settings for gas leak detection and in security for long-range surveillance. The article highlights that MWIR cameras have better penetration through atmospheric conditions compared to LWIR, making them suitable for outdoor use. They often require cooling to reduce noise and use detectors like InSb or HgCdTe.
Then there’s LWIR (Long-Wave Infrared) cameras, which operate from 8 to 14 micrometers. These are typically used in military applications because they can detect heat emitted by people and vehicles. They often use microbolometers and don’t require cooling as frequently as MWIR cameras. However, cooled versions offer higher resolution for specific needs.
ESWIR (Extended SWIR) extends the SWIR range beyond 1.7 micrometers up to around 2.2 micrometers. This allows them to detect a wider range of thermal emissions, useful in advanced surveillance and scientific research where longer wavelengths are necessary.
I should summarize each type’s key features, applications, and technologies used. It’s important to note the differences in their spectral ranges, whether they detect reflected light or emitted heat, and their typical use cases. Also, mentioning the materials and cooling requirements will help differentiate them further.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user has already provided some previous information, but now they want a comparison specifically between LWIR and ESWIR cameras.
Looking at the current search results, it seems like there was an error because Google returned a 429 Too Many Requests when trying to access the comparison. That means I can’t get direct information from that source. So, I have to rely on the previously recorded information and any other available data.
From the previous records, I know:
SWIR (Short-Wave Infrared) operates in the range of 0.9 to 1.7 µm. It’s good for detecting thermal emissions through materials like glass and is used in industrial inspections and surveillance.
MWIR (Mid-Wave Infrared) operates from 1.0 to 5.0 µm. The FLIR A6780 MWIR camera, for example, uses a cooled InSb detector and has high frame rates up to 4,130 Hz. It’s used in industrial, military, and manufacturing R&D.
LWIR (Long-Wave Infrared) operates from 5 to 8 µm. It’s ideal for high-temperature applications like industrial furnaces and is used in automotive ADAS and autonomous driving because it works well in low-light conditions.
ESWIR (Extended Short-Wave Infrared) extends the SWIR range into NIR, up to 2.6 µm. This allows better detection of a wider range of thermal emissions, making it suitable for advanced surveillance and scientific research.
Since I can’t access new information on LWIR vs ESWIR, I’ll have to compare them based on what’s already known.
LWIR operates at longer wavelengths (5-8 µm) and is better for high-temperature objects and low-light conditions. It’s used in automotive applications because it can detect pedestrians effectively.
ESWIR extends SWIR into NIR, offering a broader spectrum (0.9 to 2.6 µm). This makes it more versatile for detecting various thermal emissions, useful in surveillance and scientific research.
So, the key differences would be their spectral ranges, typical use cases, and applications. LWIR is better for high-temperature and automotive needs, while ESWIR offers extended capabilities for broader detection.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking INFO [src.utils.deep_research] 🤯 Start Record Deep Thinking: INFO [src.utils.deep_research] Okay, so I need to figure out the differences between SWIR, MWIR, LWIR, and ESWIR cameras. The user provided some previous information, but it seems like the current search didn’t yield any useful results because Google blocked it with a CAPTCHA message. That’s not helpful.
Looking at the Previous Recorded Information, I see that there are summaries about each camera type. For example, SWIR operates in 0.9 to 1.7 µm and is good for detecting thermal emissions through glass. MWIR goes from 1.0 to 5.0 µm and is used in industrial and military settings. LWIR covers 5 to 8 µm and is ideal for high-temperature objects, while ESWIR extends SWIR into the NIR spectrum up to 2.6 µm.
Since the current search didn’t give any new data, I can only rely on what’s already been recorded. So, I should structure the JSON output based on that information without adding anything new from the blocked search results.
I need to make sure each entry is concise but includes key details like spectral ranges and applications. Also, I must avoid redundancy by checking if the same info is already present. For example, there are multiple entries about LWIR in automotive applications, so I should include that once.
The thinking field should explain how each piece of information can be used in a report, maybe in sections like introduction or analysis. Since all the data is from previous searches, the URLs and titles will either be known sources or marked as unknown if not attributed.
I’ll go through each entry in Previous Recorded Information, extract the necessary details, ensure they’re unique, and format them into JSON with appropriate thinking on their placement in a report.
INFO [src.utils.deep_research] 🤯 End Record Deep Thinking <마치 추론 모델인양..열심히 추론하는 모습 ㄷㄷㄷㄷㄷㄷㄷ>
이런 식으로 결과물을 마크다운으로 생성합니다.
내용물을 보면 마크다운 문법으로 엄청난 양을 리서치를 해 놨네요;; (참고로 3090 24g모델 한장으로 돌린거라 거진 30분 넘게 돌아간거 같습니다;;;;) (1번 문서에는 출처가 정리되고 2~3번 문서에는 내용이 정리되어 있네요)
이렇게 딥리서치를 구동할 수 있는 장점이 있어서 퍼플렉시티나 챗gpt의 딥리서치 보다 조금 더 풍부한 리서치를 시킬 수 있는 장점이 있습니다.
그동안 개인 사용자는 무료였던 옵시디언, 그러나 업무용으로 사용하려면 라이선스 문제가 있었습니다. 그러나 20일 부터는 상업적 사용도 무료로 라이선스가 변경되었습니다.
자세한 내용은 아래 원문과 번역본을 참고해 주세요.
번역본
Obsidian 상업 라이선스가 선택 사항으로 변경되었습니다.
오늘부터 Obsidian의 상업 라이선스(Commercial License)가 선택 사항이 됩니다. 이제 누구나 업무용으로 무료로 Obsidian을 사용할 수 있습니다. Obsidian이 귀하의 조직에 도움이 된다면, 여전히 상업 라이선스를 구매하여 개발을 지원할 수 있습니다.
변경되는 사항
✔ 아무것도 달라지지 않습니다. ✔ 계정이 필요하지 않습니다. ✔ 광고 없음, 추적 없음, 숨겨진 조건 없음. ✔ 데이터는 사용자의 완전한 통제 하에 있으며, 로컬에 Markdown 파일로 저장됩니다. ✔ 모든 기능을 제한 없이 무료로 사용할 수 있습니다.
왜 이러한 변화를 선택했을까요?
단순함(Simplicity) 때문입니다. 기존의 상업 라이선스 정책은 혼란을 초래하고 가격 구조를 불필요하게 복잡하게 만들었습니다. 또한, **Obsidian Manifesto(Obsidian 선언문)**에서 밝힌 바와 같이,
“우리는 모든 사람들이 명확하게 사고하고 효과적으로 아이디어를 정리할 수 있는 도구를 가져야 한다고 믿습니다.” 이러한 원칙을 더욱 충실히 따르기 위한 결정입니다.
10,000개 이상의 조직에서 Obsidian을 사용하고 있습니다.
Obsidian은 정부, 사이버 보안, 의료, 금융과 같은 보안이 중요한 환경에서 널리 사용됩니다. Amazon과 Google을 포함한 세계 최대 규모의 조직에서도 수천 명의 직원이 매일 Obsidian을 사용하고 있습니다. 이 팀들은 보다 효과적으로 사고하고, 데이터의 완전한 소유권을 유지하기 위해 Obsidian을 신뢰합니다.
상업 라이선스가 선택 사항으로 변경됩니다.
기존에는 직원이 2명 이상인 기업이 Obsidian을 업무용으로 사용하려면 상업 라이선스를 구매해야 했습니다. 하지만 이제는 필수가 아니라 선택 사항입니다. 다만, 조직이 Obsidian을 지원하고 싶다면 여전히 라이선스를 구매할 수 있습니다. 이는 개인 사용자용 Catalyst 라이선스와 유사한 방식입니다.
또한, Obsidian을 지원하는 조직은 ‘Obsidian Enterprise’ 페이지에서 소개됩니다. 귀사의 로고를 여기에 표시하려면 25개 이상의 라이선스를 구매하면 됩니다.
Obsidian은 100% 사용자 지원으로 운영됩니다.
Obsidian은 여전히 Sync, Publish와 같은 추가 서비스를 통해 운영됩니다. 미래에는 팀을 위한 추가 서비스를 제공할 계획이지만, 이 역시 선택 사항으로 남을 것입니다.